IT-Zeitschriften, Fachbücher, eBooks, digitale Magazine und vieles mehr - direkt im heise shop online kaufen
Warenkorb Ihr Warenkorb ist noch leer.

  •  
     
32,90 €*

Einführung in TensorFlow

Buch

Bewerten Sie dieses Produkt als Erster

Deep-Learning-Systeme programmieren, trainieren, skalieren und deployen
Lieferung: 1-4 Tage
Tags:
Autor: Tom Hope, Yehezkel S. Resheff, Itay Lieder
Anbieter: O'Reilly
Sprache: Deutsch
EAN: 9783960090748
Veröffentlicht: 01.05.2018
Inhalt

Deep-Learning-Netze, die mitgroßen Datenmengen trainiert werden, lösen komplexe Aufgaben mit erstaunlicher Genauigkeit.

Dieses Buch ist eine praktische Einführung in TensorFlow, die führende Open-Source-Softwarebibliothek zum Erstellen und Anlernen von Deep-Learning-Netzen - zum Beispiel für die Sprach- und Bilderkennung, die Verarbeitung natürlicher Sprache (NLP) oder die vorhersagende Datenanalyse. Es bietet einer technisch orientierten Leserschaft einen praktischen Zugang zu den Grundlagen von TensorFlow - von Datenanalytikern und Ingenieuren bis hin zu Studenten und Wissenschaftlern. Zunächst starten Sie mit einigen einfachen Beispielaufgaben mit TensorFlow, anschließend tauchen Sie tiefer in Themen ein wie die Architektur neuronaler Netze, die Visualisierung mit TensorBoard, Abstraktionsbibliotheken für TensorFlow oder Multithread-Pipelines zur Dateneingabe. Wenn Sie dieses Buch durchgearbeitet haben, sind Sie in der Lage, Deep-Learning-Systeme in TensorFlow zu erstellen und im Produktvertrieb einzusetzen.

Über die Autoren

Tom Hope ist Forscher auf dem Gebiet des angewandten maschinellen Lernens und ein Datenanalyst mit umfangreichen Erfahrungen in der akademischen Welt und der Industrie. Er hat auf verschiedenen Anwendungsgebieten Forschungs- und Entwicklungsprojekte zu Datenanalyse und Deep Learning geleitet. Yehezkel S. Resheff forscht zu angewandter Datenanalyse. Seine Dissertation beschäftigte sich mit maschinellem Lernen und Lernmethoden für tragbare Geräte und dem Internet der Dinge. Er hat in der Vergangenheit Forschungs- und Entwicklungsprojekte zu Deep Learning bei Intel und Microsoft geleitet. Itay Lieder ist Forscher auf dem Gebiet des angewandten maschinellen Lernens und der Computer-Neurowissenschaft. Für seine Abschlussarbeit entwickelte er Algorithmen zur Modellierung grundlegender Wahrnehmungsvorgänge. Er hat innovative Forschungs- und Entwicklungsprojekte zu Deep Learning für Textanalyse und Web-Mining bei großen internationalen Firmen geleitet.
Um bewerten zu können, melden Sie sich bitte an

  •