IT-Zeitschriften, Fachbücher, eBooks, digitale Magazine und vieles mehr - direkt im heise shop online kaufen
Warenkorb Ihr Warenkorb ist noch leer.

  •  
     
34,99 €*

Entwicklung von Handelssystemen mittels Genetischer Programmierung anhand eines Fallbeispiels

eBook

Bewerten Sie dieses Produkt als Erster

Diplomarbeit aus dem Jahr 2007 im Fachbereich Informatik - Angewandte Informatik, Note: 1.7, Universität Hamburg, Sprache: Deutsch, Abstract: In dieser Arbeit wird die Genetische Programmierung angewendet, um Handelssysteme für den EUR/USD-Währungsmarkt auf Basis von Intraday Kursdaten zu entwickeln. Neben den Kursdaten werden verschiedene ...
Sofortige Lieferung
Autor: Holger Hartmann
Anbieter: Examicus Verlag
Sprache: Deutsch
EAN: 9783869437408
Veröffentlicht: 02.03.2012
Format: EPUB
Schutz: nichts
Diplomarbeit aus dem Jahr 2007 im Fachbereich Informatik - Angewandte Informatik, Note: 1.7, Universität Hamburg, Sprache: Deutsch, Abstract: In dieser Arbeit wird die Genetische Programmierung angewendet, um Handelssysteme für den EUR/USD-Währungsmarkt auf Basis von Intraday Kursdaten zu entwickeln. Neben den Kursdaten werden verschiedene gleitende Durchschnitte der Kursdaten als Eingabe verwendet.Der entwickelte Evolutionäre Algorithmus baut auf dem Framework ECJ auf. Die erzeugten Handelssysteme werden durch eine Handelssimulation im Rahmen der Fitnessfunktion bewertet. Die Genetischen Operatoren sind angepasst worden, um sog. Knotengewichte zu unterstützen. Durch die Knotengewichte soll einerseits die Makromutation eingedämmt, andererseits die Interpretierbarkeit der erzeugten Handelssysteme verbessert werden.Die erzielten Resultate der Experimente zeigen, dass die erzeugten Handelssysteme offenbar erfolgreich in der Lage sind, in den Kursdaten enthaltene Informationen gewinnbringend zu nutzen. Durch die Bestimmung der optimalen Positionsgröße werden die mit den erzeugten Handelssystemen erzielten Gewinne optimiert. Bei Einhaltung der Mindestanlagedauer sind die so erzielten Ergebnisse auch hinsichtlich der verwendeten risikoadjustierten Kennzahl optimal.
Um bewerten zu können, melden Sie sich bitte an