IT-Zeitschriften, Fachbücher, eBooks, digitale Magazine und vieles mehr - direkt im heise shop online kaufen
Warenkorb Ihr Warenkorb ist noch leer.

  •  
     
    Ins neue Jahr mit Ritsch+Renn!
27,99 €*

Neuronale Netze für Clustern und Vorhersage. Methodenvergleich und Tools

eBook

Bewerten Sie dieses Produkt als Erster

Diplomarbeit aus dem Jahr 2001 im Fachbereich Informatik - Wirtschaftsinformatik, Note: 1,3, Westfälische Wilhelms-Universität Münster (Institut für Wirtschaftsinformatik), 98 Quellen im Literaturverzeichnis, Sprache: Deutsch, Abstract: Die Literatur zum Data Mining dokumentiert zahlreiche Versuche, aus verschiedenartigsten Datenbeständen neue ...
Sofortige Lieferung
Autor: Thomas Zabel
Anbieter: Grin Verlag
Sprache: Deutsch
EAN: 9783638320702
Veröffentlicht: 31.10.2004
Format: PDF
Schutz: nichts
Diplomarbeit aus dem Jahr 2001 im Fachbereich Informatik - Wirtschaftsinformatik, Note: 1,3, Westfälische Wilhelms-Universität Münster (Institut für Wirtschaftsinformatik), 98 Quellen im Literaturverzeichnis, Sprache: Deutsch, Abstract: Die Literatur zum Data Mining dokumentiert zahlreiche Versuche, aus verschiedenartigsten Datenbeständen neue Erkenntnisse zu gewinnen. Es werden unterschiedliche Algorithmen des Data Mining beschrieben. In dieser Arbeit soll die Eignung Künstlich Neuronaler Netze als Mining-Algorithmen für die Methoden Clustern und Vorhersage untersucht werden. Dabei begrenzt sich die Sichtweise auf Backpropagation - und Kohonen-Netze , da diese Neuronalen Netze für Clustern und Vorhersagen prädestiniert sind. Sie stellen eine Alternative zu den statistischen Methoden zur Prognose- bzw. Clustererstellung dar. Die eingesetzten Neuronalen Netze sollen mit dem K-Means-Verfahren und dem Box-Jenkins-Ansatz verglichen werden.Die theoretischen Konstrukte werden anhand von Versicherungsdaten evaluiert. Die Ergebnisse zeigen die Vor- und Nachteile der untersuchten Methoden und geben dem Leser eine Handlungsempfehlung für die Auswahl von Data Mining-Algorithmen in der Praxis.
Um bewerten zu können, melden Sie sich bitte an