Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen

Multi-Platform Graphics Programming with Kivy

56,99 €

Sofort verfügbar, Lieferzeit: Sofort lieferbar

Format auswählen
Produkt Anzahl: Gib den gewünschten Wert ein oder benutze die Schaltflächen um die Anzahl zu erhöhen oder zu reduzieren.

Multi-Platform Graphics Programming with Kivy, Apress
Basic Analytical Programming for 2D, 3D, and Stereoscopic Design
Von Moisés Cywiak, David Cywiak, im heise Shop in digitaler Fassung erhältlich

Produktinformationen "Multi-Platform Graphics Programming with Kivy"

Modern science requires computer graphics models to provide realistic visual renderings. Learning the appropriate programming tools for 2D and 3D modeling doesn’t have to be so difficult. This book reviews the best programming tools to achieve this and explains how to apply them to mobile platforms like Android.

Multi-Platform Graphics Programming with Kivy provides a straightforward introductory approach for designing 2D, 3D, and stereoscopic applications, using analytical equations from vector algebra. Throughout the book you’ll look closely at this approach and develop scenes in Kivy, taking advantage of powerful mathematical functions for arrays by NumPy for Python.

Unbuntu is used to develop the programs, which allows you to easily convert to Android platform. Each chapter contains step-by-step descriptions on each subject and provides complete program listings.

WHAT YOU’LL LEARN

* Work with Kivy, a modern, powerful multi-platform graphics system
* Convert and run programs on Android devices
* Program, fill faces, and rotate 2D and 3D polygons
* Apply the concepts of 2D and 3D applications
* Develop stereoscopic scenes
* Review a straightforward introduction to 2D, 3D, and stereoscopic graphics applications
* Use simple analytical equations from vector algebra

WHO THIS BOOK IS FOR

The primary audience is students and researchers in graphics programming with experience in analytical equations.

Moisés Cywiak is a researcher in physical optical sciences with over 20 years of teaching experience in physics, mathematics, electronic engineering, and programming in C, C++, and python, in Centro de Investigaciones en Óptica A.C.

David Cywiak received his Ph.D. degree in physics in 2014 from Universidad de Guanajuato. From 2012 to 2013 he collaborated as a guest researcher at the Dalton Cardiovascular Research Center, University of Missouri-Columbia, in the development of an optical-photoacoustic system intended for the detection of photoacoustic signals generated by cancerous cells. Since 2014 he has been working as a metrologist in the Thermometry Department at Centro Nacional de Metrologia, México. His research includes photoacoustics, optical engineering and radiation thermometry. He has over 7 years of experience teaching physics, mathematics and programming in C for undergraduate students. He also has over 5 years of experience teaching Temperature measurement techniques and calibration of instruments in the thermometry area for industry professionals.

Chapter 1: Preliminaries. Software installation

1.1. installing pip3 and IDLE

1.2. Installing kivy

1.3. Installing buildozer

Chapter 2: Polygon rotation in two dimensions

2.1. Rotation equations

2.2. Mapping equations to the screen

Chapter 3: Two dimensional polygon programming

3.1. Polygon structure

3.2. Drawing the edges of the polygon

3.3. Filling the polygon with lines

3.4. Rotating the polygon3.5. The kivy platform

3.6. main.py listing

3.7. File.kv lisitng

3.8. Using buildozer

Chapter 4: Three-dimensional projections and rotations

4.1. Projection of a three-dimensional point into a plane

4.2. Rotation of a point in a plane

Chapter 5: Programming three-dimensional polygons

5.1. Polygon structure

5.2. Basic functions

5.3. main.py listing

5.4. File.kv

Chapter 6: Stereoscopic 3D Programming

6.1. Basics of a stereoscopic view

6.2. Programming and ORing the images

6.3. Projections

6.4. Polygon structure

6.5. DrawAxes function

6.6. Points of projection

6.7. main.py listing

6.8. File.kv

Chapter 7: 3D plots programming

7.1. Program basic operations

7.2. Function overview

7.3. Generating the axes, the mesh and the function

7.4. Plotting the function in the screen

7.5. Rotating the plot

7.6. main.py listing

7.7. File.kv listing

Chapter 8: Stereoscopic 3D plots

8.1. Creating the function, coordinates and mesh

8.2. Creating two images for stereoscopic effects8.3. Drawing the plot

8.4. main.py listing

8.5. File.kv listing

8.6. Surfaces with saddle points

Chapter 9: 3D parametric plots

9.1. Parametric equations

9.2. Plotting

9.3. main.py

9.4. File.kv

Chapter 10: Stereoscopic 3D parametric plots

10.1. Generating the function

10.2. Creating PIL images for the stereoscopic effect

10.3. Plotting the function

10.4. main.py

10.5. File.kv

Chapter 11: Sympy

11.1. Analytical expressions and symbols

11.2. Declaring functions with analytical expressions

11.3. Solving equations

11.4. Solving simultaneous equations

11.5. Differentiation

11.6. Integration

Chapter 12: Plotting functions in spherical coordinates

12.1. Spherical coordinates

12.2. Spherical differential equation example

12.3. The associated Legendre polynomials12.4. Plotting 3D spherical coordinates

12.5. main.py listing

12.6. File.kv listing

12.7. Incorporating sympy into the Android project

Chapter 13. Stereoscopic plots of spherical functions

13.1. Creating the stereoscopic scenes13.2. main.py listing

13.3. File.kv listing

Chapter 14. Stereoscopic simple numerical method for the gravitational N-body problem

14.1. The gravitational N-body problem

14.2. Motion equations

14.3. Numerical approach of the dynamic equations14.4. Capturing numerical data

14.5. Five planets example

14.6. main.py listing

14.7. File.kv

Chapter 15. Stereoscopic cylindrical coordinates plotting. Aberrations of optical lenses

15.1. Ideal lens focusing. The Fresnel diffraction integral15.2. Departure from the ideal lens

15.3. The wave aberration function in cylindrical coordinates

15.4. Stereoscopic plot of the wave aberration terms in cylindrical coordinates

15.5. main.py listing

15.6. File.kv listing

Chapter 16. Stereoscopic plotting of three-dimensional conics

16.1. Analytical approach

16.2. Stereoscopic ellipsoid plotting

16.3. main.py (Ellipsoid)

16.4. File.kv

16.5. HyperboloidChapter 1: Preliminaries. Software installation

1.1. installing pip3 and IDLE

1.2. Installing kivy

1.3. Installing buildozer

Chapter 2: Polygon rotation in two dimensions

2.1. Rotation equations

2.2. Mapping equations to the screen

Chapter 3: Two dimensional polygon programming

3.1. Polygon structure

3.2. Drawing the edges of the polygon

3.3. Filling the polygon with lines

3.4. Rotating the polygon

3.5. The kivy platform

3.6. main.py listing

3.7. File.kv lisitng

3.8. Using buildozer

Chapter 4: Three-dimensional projections and rotations

4.1. Projection of a three-dimensional point into a plane

4.2. Rotation of a point in a plane

Chapter 5: Programming three-dimensional polygons

5.1. Polygon structure

5.2. Basic functions

5.3. main.py listing

5.4. File.kv

Chapter 6: Stereoscopic 3D Programming

6.1. Basics of a stereoscopic view

6.2. Programming and ORing the images

6.3. Projections

6.4. Polygon structure

6.5. DrawAxes function

6.6. Points of projection

6.7. main.py listing

6.8. File.kv

Chapter 7: 3D plots programming

7.1. Program basic operations

7.2. Function overview

7.3. Generating the axes, the mesh and the function

7.4. Plotting the function in the screen

7.5. Rotating the plot

7.6. main.py listing

7.7. File.kv listing

Chapter 8: Stereoscopic 3D plots

8.1. Creating the function, coordinates and mesh

8.2. Creating two images for stereoscopic effects

8.3. Drawing the plot

8.4. main.py listing

8.5. File.kv listing

8.6. Surfaces with saddle points

Chapter 9: 3D parametric plots

9.1. Parametric equations

9.2. Plotting

9.3. main.py

9.4. File.kv

Chapter 10: Stereoscopic 3D parametric plots

10.1. Generating the function

10.2. Creating PIL images for the stereoscopic effect

10.3. Plotting the function

10.4. main.py

10.5. File.kv

Chapter 11: Sympy

11.1. Analytical expressions and symbols

11.2. Declaring functions with analytical expressions

11.3. Solving equations

11.4. Solving simultaneous equations

11.5. Differentiation

11.6. Integration

Chapter 12: Plotting functions in spherical coordinates

12.1. Spherical coordinates

12.2. Spherical differential equation example

12.3. The associated Legendre polynomials

12.4. Plotting 3D spherical coordinates

12.5. main.py listing

12.6. File.kv listing

12.7. Incorporating sympy into the Android project

Chapter 13. Stereoscopic plots of spherical functions

13.1. Creating the stereoscopic scenes

13.2. main.py listing

13.3. File.kv listing

Chapter 14. Stereoscopic simple numerical method for the gravitational N-body problem

14.1. The gravitational N-body problem

14.2. Motion equations

14.3. Numerical approach of the dynamic equations

14.4. Capturing numerical data

14.5. Five planets example

14.6. main.py listing

14.7. File.kv

Chapter 15. Stereoscopic cylindrical coordinates plotting. Aberrations of optical lenses

15.1. Ideal lens focusing. The Fresnel diffraction integral

15.2. Departure from the ideal lens

15.3. The wave aberration function in cylindrical coordinates

15.4. Stereoscopic plot of the wave aberration terms in cylindrical coordinates

15.5. main.py listing

15.6. File.kv listing

Chapter 16. Stereoscopic plotting of three-dimensional conics

16.1. Analytical approach

16.2. Stereoscopic ellipsoid plotting

16.3. main.py (Ellipsoid)

16.4. File.kv

16.5. Hyperboloid

16.6. main.py (Hyperboloid)

Chapter 17. Two-dimensional Fourier transform

17.1. One-dimensional Fourier transform

17.2. Rectangular and sinc functions

17.3. Code for calculating the discrete one-dimensional Fourier transform

17.4. Two-dimensional Fourier transform

17.5. Discrete two-dimensional Fourier transform

17.6. main.py lisitng

17.7. File.kv listing

17.8. The Fourier transform of the circular function

17.9. Analytical formulation for the Fourier transform of the circular function

Chapter 18. Stereoscopic two-dimensional Fourier transform

18.1. Piloting the functions

18.2. main.py listing

18.3. File.kv listing

16.6. main.py (Hyperboloid)

Chapter 17. Two-dimensional Fourier transform

17.1. One-dimensional Fourier transform17.2. Rectangular and sinc functions

17.3. Code for calculating the discrete one-dimensional Fourier transform

17.4. Two-dimensional Fourier transform

17.5. Discrete two-dimensional Fourier transform

17.6. main.py lisitng

17.7. File.kv listing

17.8. The Fourier transform of the circular function

17.9. Analytical formulation for the Fourier transform of the circular function

Chapter 18. Stereoscopic two-dimensional Fourier transform

18.1. Piloting the functions

18.2. main.py listing

18.3. File.kv listing

Artikel-Details

Anbieter:
Apress
Autor:
David Cywiak, Moisés Cywiak
Artikelnummer:
9781484271131
Veröffentlicht:
15.06.21