Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen

Deep Learning in Textual Low-Data Regimes for Cybersecurity

117,69 €

Sofort verfügbar, Lieferzeit: Sofort lieferbar

Format auswählen

Deep Learning in Textual Low-Data Regimes for Cybersecurity, Springer Vieweg
Von Markus Bayer, im heise shop in digitaler Fassung erhältlich

Produktinformationen "Deep Learning in Textual Low-Data Regimes for Cybersecurity"

In today's fast-paced cybersecurity landscape, professionals are increasingly challenged by the vast volumes of cyber threat data, making it difficult to identify and mitigate threats effectively. Traditional clustering methods help in broadly categorizing threats but fall short when it comes to the fine-grained analysis necessary for precise threat management. Supervised machine learning offers a potential solution, but the rapidly changing nature of cyber threats renders static models ineffective and the creation of new models too labor-intensive. This book addresses these challenges by introducing innovative low-data regime methods that enhance the machine learning process with minimal labeled data. The proposed approach spans four key stages:

Data Acquisition: Leveraging active learning with advanced models like GPT-4 to optimize data labeling.

Preprocessing: Utilizing GPT-2 and GPT-3 for data augmentation to enrich and diversify datasets.

Model Selection: Developing a specialized cybersecurity language model and using multi-level transfer learning.

Prediction: Introducing a novel adversarial example generation method, grounded in explainable AI, to improve model accuracy and resilience.

Introduction.- Research Design.- Findings.- Discussion.- Conclusion.- Information Overload in Crisis Management: Bilingual Evaluation of Embedding Models for Clustering Social Media Posts in Emergencies.- ActiveLLM: Large Language Model-based Active Learning for Textual Few-Shot Scenarios.- A Survey on Data Augmentation for Text Classification.- Data Augmentation in Natural Language Processing: A Novel Text Generation Approach for Long and Short Text Classifiers.- Design and Evaluation of Deep Learning Models for Real-Time Credibility Assessment in Twitter.- CySecBERT: A Domain-Adapted Language Model for the Cybersecurity Domain.- Multi-Level Fine-Tuning, Data Augmentation, and Few-Shot Learning for Specialized Cyber Threat Intelligence.- XAI-Attack: Utilizing Explainable AI to Find Incorrectly Learned Patterns for Black-Box Adversarial Example Creation.

Artikel-Details

Anbieter:
Springer Vieweg
Autor:
Markus Bayer
Artikelnummer:
9783658487782
Veröffentlicht:
20.08.25

Barrierefreiheit

This PDF has been created in accordance with the PDF/UA-1 standard to enhance accessibility, including screen reader support, described non-text content (images, graphs), bookmarks for easy navigation

  • entspricht den Vorgaben der PDF / UA 1 (05)
  • keine Vorlesefunktionen des Lesesystems deaktiviert (bis auf) (10)
  • navigierbares Inhaltsverzeichnis (11)
  • logische Lesereihenfolge eingehalten (13)
  • kurze Alternativtexte (z.B für Abbildungen) vorhanden (14)
  • Inhalt auch ohne Farbwahrnehmung verständlich dargestellt (25)
  • hoher Kontrast zwischen Text und Hintergrund (26)
  • Navigation über vor-/zurück-Elemente (29)
  • alle zum Verständnis notwendigen Inhalte über Screenreader zugänglich (52)
  • Kontakt zum Herausgeber für weitere Informationen zur Barrierefreiheit (99)