Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen

Advanced Automation for Comprehensible Causal Explanations of Reinforcement Learning Agents

90,94 €

Sofort verfügbar, Lieferzeit: Sofort lieferbar

Format auswählen

Advanced Automation for Comprehensible Causal Explanations of Reinforcement Learning Agents, Springer Vieweg
Von Rudy Milani, im heise shop in digitaler Fassung erhältlich

Produktinformationen "Advanced Automation for Comprehensible Causal Explanations of Reinforcement Learning Agents"

This thesis introduces Auto-BENEDICT, a novel, fully automated methodology designed to generate human-comprehensible causal explanations for model-free Reinforcement Learning (RL) agents. The system addresses the trade-off between high performance and transparency in RL by integrating Bayesian Networks for causal inference and Recurrent Neural Networks to forecast future states and actions. The method provides answers to both “Why” and “Why not” questions, thereby increasing user trust and interpretability. The work also introduces enhanced importance metrics—including both Q-value-based and graph-based approaches—used to detect distal information, i.e., critical sequences of states or actions that are key to solving a task. These metrics are then fused with the causal explanation framework, resulting in Auto-BENEDICT, which not only explains but also recognizes high-risk or critical states automatically. Validation through computational experiments and a human evaluation study shows that Auto-BENEDICT significantly outperforms traditional methods in comprehensibility and trustworthiness, contributing a major advancement in Explainable Reinforcement Learning.  

Artikel-Details

Anbieter:
Springer Vieweg
Autor:
Rudy Milani
Artikelnummer:
9783658504953
Veröffentlicht:
10.02.26

Barrierefreiheit

This PDF has been created in accordance with the PDF/UA-1 standard to enhance accessibility, including screen reader support, described non-text content (images, graphs), bookmarks for easy navigation

  • entspricht den Vorgaben der PDF / UA 1 (05)
  • keine Vorlesefunktionen des Lesesystems deaktiviert (bis auf) (10)
  • navigierbares Inhaltsverzeichnis (11)
  • logische Lesereihenfolge eingehalten (13)
  • kurze Alternativtexte (z.B für Abbildungen) vorhanden (14)
  • Inhalt auch ohne Farbwahrnehmung verständlich dargestellt (25)
  • hoher Kontrast zwischen Text und Hintergrund (26)
  • Navigation über vor-/zurück-Elemente (29)
  • alle zum Verständnis notwendigen Inhalte über Screenreader zugänglich (52)
  • Kontakt zum Herausgeber für weitere Informationen zur Barrierefreiheit (99)