Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen

Enterprise Guide for Implementing Generative AI and Agentic AI

39,99 €

Dieses Produkt erscheint am 29.11.25

Format auswählen

Enterprise Guide for Implementing Generative AI and Agentic AI, Apress
A Practical Guide to Developing, Deploying, and Operationalizing AI-Driven Applications for Enterprise Use
Von Shakuntala Gupta Edward, Rahul Bhattacharya, Vikas Sinha, im heise shop in digitaler Fassung erhältlich

Produktinformationen "Enterprise Guide for Implementing Generative AI and Agentic AI"

Generative AI and Agentic AI together are revolutionizing the technology landscape, with profound and far-reaching impacts across industries. Organizations are increasingly adopting these technologies to drive innovation, enhance unstructured content management, and improve problem-solving capabilities. With Agentic AI, enterprises are moving towards the development of intelligent systems that can plan, reason, and act with autonomy. While early proof-of-concepts (POCs) demonstrated the potential of these technologies, the current shift is toward responsible and scalable production implementations that leverage both generative and agentic capabilities. This book begins by guiding you through the technological evolution of AI, from early machine learning to today’s large language models (LLMs) and agentic systems. It then explores a wide range of use cases across industries, highlighting how LLMs can support decision-making, and how Agentic AI enables dynamic, collaborative systems that act with autonomy and intent. This is followed by Design Patterns across the lifecycle of AI solution development, deployment and monitoring. Readers will then gain insights into the methodologies for developing and deploying Generative and Agentic AI solutions at an enterprise level. A featured implementation demonstrates how Agentic AI can be effectively put into action. The book also introduces essential concepts such as MLOps, LLMOps, and Responsible AI principles which are critical for transitioning the AI solutions from experimentation to production. These principles ensure that AI deployments are scalable, secure, ethical and compliant. The book concludes with key takeaways and best practices for developing, evaluating, deploying and scaling AI applications responsibly and effectively within enterprise settings. You Will:
  • Understand key design patterns to develop, deploy and monitor a Generative AI solution effectively.
  • Learn how to develop and implement a production-ready Agentic AI use case.
  • Discover best practices for building scalable, secure, and enterprise-grade AI solutions.
  • Understand how to assess and mitigate risks using Responsible AI principles and LLMOps best practices.
This book is for : Enterprise Software Engineers and Architects PART – I.- Chapter 1:  Introduction: Evolution of AI and Large language models (LLM). PART – II.- Chapter 2:  Generative AI in Business. PART – III.-  Chapter 3:  Design patterns for developing enterprise GenAI applications. Chapter 4: Introduction to Agentic.- Chapter 5: End to end implementation of a practical Use case. Chapter 6: Evaluation and Deployment. PART – IV.- Chapter 7: Responsible AI & Risk framework.- Chapter 8: Conclusion and best practices.

Artikel-Details

Anbieter:
Apress
Autor:
Shakuntala Gupta Edward, Rahul Bhattacharya, Vikas Sinha
Artikelnummer:
9798868816031
Veröffentlicht:
29.11.25

Barrierefreiheit

This PDF has been created in accordance with the PDF/UA-1 standard to enhance accessibility, including screen reader support, described non-text content (images, graphs), bookmarks for easy navigation

  • entspricht den Vorgaben der PDF / UA 1 (05)
  • keine Vorlesefunktionen des Lesesystems deaktiviert (bis auf) (10)
  • navigierbares Inhaltsverzeichnis (11)
  • logische Lesereihenfolge eingehalten (13)
  • kurze Alternativtexte (z.B für Abbildungen) vorhanden (14)
  • Inhalt auch ohne Farbwahrnehmung verständlich dargestellt (25)
  • hoher Kontrast zwischen Text und Hintergrund (26)
  • Navigation über vor-/zurück-Elemente (29)
  • alle zum Verständnis notwendigen Inhalte über Screenreader zugänglich (52)
  • Kontakt zum Herausgeber für weitere Informationen zur Barrierefreiheit (99)