Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen

Deep Learning with Rust

62,99 €

Sofort verfügbar, Lieferzeit: Sofort lieferbar

Format auswählen

Deep Learning with Rust, Apress
Mastering Efficient and Safe Neural Networks in the Rust Ecosystem
Von Mehrdad Maleki, im heise shop in digitaler Fassung erhältlich

Produktinformationen "Deep Learning with Rust"

  What You Will Learn
  • Understand deep learning foundations and Rust programming principles.
  • Implement and optimize deep learning models in Rust, such as convolutional neural networks (CNNs), recurrent neural networks (RNNs), and generative adversarial networks (GANs.
  • Develop practical deep learning applications to solve real-world problems, including natural language processing, computer vision, and speech recognition.
  • Explore Rust’s safety features, including its strict type of system and ownership model, and learn strategies to create reliable and secure AI software.
  • Gain an understanding of the broader ecosystem of tools and libraries available for deep learning in Rust.
Who This Book Is for A broad audience with varying levels of experience and knowledge, including advanced programmers with a solid foundation in Rust or other programming languages (Python, C++, and Java) who are interested in learning how Rust can be used for deep learning apps. It may also be suitable for data scientists and AI practitioners who are looking to understand how Rust can enhance the performance and safety of deep learning models, even if they are new to the Rust programming language.

Artikel-Details

Anbieter:
Apress
Autor:
Mehrdad Maleki
Artikelnummer:
9798868822087
Veröffentlicht:
10.02.26

Barrierefreiheit

This PDF has been created in accordance with the PDF/UA-1 standard to enhance accessibility, including screen reader support, described non-text content (images, graphs), bookmarks for easy navigation

  • entspricht den Vorgaben der PDF / UA 1 (05)
  • keine Vorlesefunktionen des Lesesystems deaktiviert (bis auf) (10)
  • navigierbares Inhaltsverzeichnis (11)
  • logische Lesereihenfolge eingehalten (13)
  • kurze Alternativtexte (z.B für Abbildungen) vorhanden (14)
  • Inhalt auch ohne Farbwahrnehmung verständlich dargestellt (25)
  • hoher Kontrast zwischen Text und Hintergrund (26)
  • Navigation über vor-/zurück-Elemente (29)
  • alle zum Verständnis notwendigen Inhalte über Screenreader zugänglich (52)
  • Kontakt zum Herausgeber für weitere Informationen zur Barrierefreiheit (99)