Machine Learning mit Python (3. Auflg.)

49,99 €

Lieferzeit 1-4 Werktage

  • Datenanalyse mit ausgereiften statistischen Modellen des Machine Learnings
  • Anwendung der wichtigsten Algorithmen und Python-Bibliotheken wie NumPy, SciPy, Scikit-learn, Keras, TensorFlow 2, Pandas und Matplotlib
  • Best Practices zur Optimierung Ihrer Machine-Learning-Algorithmen
Format
Anzahl:
Artikel-Beschreibung

Das umfassende Praxis-Handbuch für Data Science, Deep Learning und Predictive Analytics in 3. Auflage 03/2021.

Mit diesem Buch erhalten Sie eine umfassende Einführung in die Grundlagen und den effektiven Einsatz von Machine-Learning- und Deep-Learning-Algorithmen und wenden diese anhand zahlreicher Beispiele praktisch an. Dafür setzen Sie ein breites Spektrum leistungsfähiger Python-Bibliotheken ein, insbesondere Keras, TensorFlow 2 und Scikit-learn. Auch die für die praktische Anwendung unverzichtbaren mathematischen Konzepte werden verständlich und anhand zahlreicher Diagramme anschaulich erläutert.

Die dritte Auflage dieses Buchs wurde für TensorFlow 2 komplett aktualisiert und berücksichtigt die jüngsten Entwicklungen und Technologien, die für Machine Learning, Neuronale Netze und Deep Learning wichtig sind. Dazu zählen insbesondere die neuen Features der Keras-API, das Synthetisieren neuer Daten mit Generative Adversarial Networks (GANs) sowie die Entscheidungsfindung per Reinforcement Learning.

Ein sicherer Umgang mit Python wird vorausgesetzt.

Aus dem Inhalt:

  • Trainieren von Lernalgorithmen und Implementierung in Python
  • Gängige Klassifikationsalgorithmen wie Support Vector Machines (SVM), Entscheidungsbäume und Random Forest
  • Natural Language Processing zur Klassifizierung von Filmbewertungen
  • Clusteranalyse zum Auffinden verborgener Muster und Strukturen in Ihren Daten
  • Deep-Learning-Verfahren für die Bilderkennung
  • Datenkomprimierung durch Dimensionsreduktion
  • Training Neuronaler Netze und GANs mit TensorFlow 2
  • Kombination verschiedener Modelle für das Ensemble Learning
  • Einbettung von Machine-Learning-Modellen in Webanwendungen
  • Stimmungsanalyse in Social Networks
  • Modellierung sequenzieller Daten durch rekurrente Neuronale Netze
  • Reinforcement Learning und Implementierung von Q-Learning-Algorithmen


Inhalt & Leseprobe (PDF-Link)

Artikel-Details
Anbieter:
Mitp-Verlag
Autor:
Sebastian Raschka, Vahid Mirjalili
Artikelnummer:
9783747502136
Veröffentlicht:
01.03.2021
Seitenanzahl:
768

0 von 0 Bewertungen

Geben Sie eine Bewertung ab!

Teilen Sie Ihre Erfahrungen mit dem Produkt mit anderen Kunden.